Trwa ładowanie...
dgu08q9
3 lutego 2020, 12:21

Praktyczne uczenie maszynowe

książka
Oceń jako pierwszy:
dgu08q9
Materiały prasowe
Źródło: Materiały prasowe

Ostatnia dekada to czas bezprecedensowego rozwoju sztucznej inteligencji – nie tylko przełomowych badań nad algorytmami uczenia maszynowego, ale również coraz powszechniejszego stosowania inteligentnych maszyn w najróżniejszych dziedzinach naszego życia. Rozwój ten ogranicza niewystarczająca liczba specjalistów, łączących znajomość modelowania danych (przygotowania danych i zasad działania algorytmów uczenia maszynowego) ze znajomością języków analizy danych, takich jak SQL, R czy Python.

Inżynieria danych (ang. data science) to interdyscyplinarna wiedza, której opanowanie wymaga znajomości algebry, geometrii, statystyki, rachunku prawdopodobieństwa i algorytmiki, uzupełnionej o praktyczną umiejętność programowania. Co więcej, sztuczna inteligencja jest przedmiotem intensywnych badań naukowych i samo śledzenie postępów w tej dziedzinie wiąże się z regularnym (codziennym) dokształcaniem.

Niniejsza książka łączy w sobie teorię z praktyką. Opisuje rozwiązania kilkunastu typowych problemów, takich jak prognozowanie zysków, optymalizacja kampanii marketingowej, proaktywna konserwacja sprzętu czy oceny ryzyka kredytowego. Ich układ jest celowy – każdy przykład jest okazją do wyjaśnienia określonych zagadnień, zaczynając od narzędzi, przez podstawy uczenia maszynowego, sposoby oceny jakości danych i ich przygotowania do dalszej analizy, zasady tworzenia modeli uczenia maszynowego i ich optymalizacji, po wskazówki dotyczące wdrożenia gotowych modeli do produkcji.

Książka jest adresowana do wszystkich, którzy chcieliby poznać lub udoskonalić:

praktyczną znajomość statystki i umiejętność wizualizacji danych niezbędnej do oceny jakości danych;

praktyczną znajomość języka SQL, R lub Python niezbędnej do uporządkowania, wstępnego przygotowania i wzbogacenia danych;

zasady działania poszczególnych algorytmów uczenia maszynowego koniecznych do ich wyboru i optymalizacji;

korzystanie z języka R lub Python do stworzenia, oceny, zoptymalizowania i wdrożenia do produkcji modeli eksploracji danych.

Zarówno studenci kierunków informatycznych, jak również analitycy, programiści, administratorzy baz danych oraz statystycy znajdą w książce informacje, które pozwolą im opanować praktyczne umiejętności potrzebne do samodzielnego tworzenia systemów uczenia maszynowego.

Praktyczne uczenie maszynowe
Numer ISBN

978-83-01-20762-5

Wymiary

165x235

Oprawa

miękka

Liczba stron

360

Język

polski

Podziel się opinią

Komentarze

Trwa ładowanie
.
.
.
dgu08q9
dgu08q9
dgu08q9
dgu08q9
dgu08q9

Pobieranie, zwielokrotnianie, przechowywanie lub jakiekolwiek inne wykorzystywanie treści dostępnych w niniejszym serwisie - bez względu na ich charakter i sposób wyrażenia (w szczególności lecz nie wyłącznie: słowne, słowno-muzyczne, muzyczne, audiowizualne, audialne, tekstowe, graficzne i zawarte w nich dane i informacje, bazy danych i zawarte w nich dane) oraz formę (np. literackie, publicystyczne, naukowe, kartograficzne, programy komputerowe, plastyczne, fotograficzne) wymaga uprzedniej i jednoznacznej zgody Wirtualna Polska Media Spółka Akcyjna z siedzibą w Warszawie, będącej właścicielem niniejszego serwisu, bez względu na sposób ich eksploracji i wykorzystaną metodę (manualną lub zautomatyzowaną technikę, w tym z użyciem programów uczenia maszynowego lub sztucznej inteligencji). Powyższe zastrzeżenie nie dotyczy wykorzystywania jedynie w celu ułatwienia ich wyszukiwania przez wyszukiwarki internetowe oraz korzystania w ramach stosunków umownych lub dozwolonego użytku określonego przez właściwe przepisy prawa.Szczegółowa treść dotycząca niniejszego zastrzeżenia znajduje siętutaj